

MEASURING NOISE & VIBRATION

NVH assessment and optimization in EVs and HEVs

Guillaume Cousin Product Manager, OROS

www.oros.com

Contents

- > NVH New challenges
- > Different noise problems to be tackled
- > Electromagnetic noise and tools
- > Sound design challenges
- > Transfer from sources to response
- > Testing solutions

From Combustion (ICE) to Electric (EV/HEV)

- ICE replaced by a Motor
- Weight reduction (chassis, engine, drive line)
- Powertrain excitation content changes (Gearbox)
- New components (Inverter, Battery charging etc...)
- Chassis adaptation required to receive the new generation powertrains (motor, gearbox etc...)

From Combustion (ICE) to Electric (EV/HEV)

NVH Consequences:

Different sound content (electromagnetic noise):
From a broadband spectrum (appreciated)
SOUND to a more tonal and annoying NOISE.

- Reduction of the ICE **masking effect** (Aerodynamic, Accessories motors, Tires)

- Modifications of the connection points (**need for TPA analysis**)

- New structural **excitation** frequencies and **response** (frame & body weight decrease)

Where to solve the challenges ?

EV/HEV Testing solutions: from sources to response

1 Electric Powertrain

2 Accessories & Components

5 Battery charging noise

6 Aerodynamic sources

Chassis

Electrical powertrain sources

Aerodynamic Sources:

- Fan blades passing frequencies -
- Wind noise

-

-

Motors configurations

ASYNC (Induction / IM) AC SYNC (SM)

- Squirrel Cage Induction Machines (SCIM)
 Doubly Fed Induction machines (DFIM)
 Wound Rotor (Slip ring wound rotor)
- Wound Rotor (WRSM)
- Permanent Magnet SM (IPMSM,SPMSM)
- Synchronous Reluctance Machines (SyncRM)
- Switched Reluctance Machines (SRM)

8

CONTROL : different PWM strategy

Electromagnetic Noise

Electromagnetic Noise

ATE 2019 - NVH assessment and optimization in EVs and HEVs

| 10

Electromagnetic Noise: e-markers

ATE 2019 - NVH assessment and optimization in EVs and HEVs

| 11

Spatiogram: a unique tool

- > Based:
 - On motor topology
 - Load state, control strategy
- > Characterize the circumferential distribution (using wavenumbers) of e-forces (electromagnetic forces) with their exciting associated frequencies -> avoid sensitive frequencies
- Completes the ODS approach

Where to solve the challenges?

May 2019

| 13

Sound Design

- Different sound content (electromagnetic noise): From a broadband spectrum (appreciated) **SOUND** to a more tonal and annoying **NOISE with a higher frequency content.**

- Reduction of the ICE **masking effect** (Aerodynamic, Accessories motors, Tires).

SOUND DESIGN based on Psychoacoustics Indicators & Filtering Playback

- Quantifies the perception of sound: Measure what we ear
- Determine objective psychoacoustic metrics in order to match the acoustic perception obtained through the human ear

Relevant psychoacoustics indicators for electric motors

Electromagnetic noise characteristics:

- Involves strong Tonalities:
 - Tone to noise ratio
 - Prominence ratio
- Noise shifted to high frequencies
- Low frequencies: Humming noise
- High frequencies: Whining noise
- Strong tonal content of pole/slot effect
- PWM effects: Roughness

Emerging accessories noise

Masking effect decrease → Emergence of accessories components (electric motor based) → Sound Quality R&D required

| 16

Example of electric motors for levelling headlamps

OROS e-NVH module

1- Applicative setup: e-motor + converter characteristics

2- Dedicated e-NVH tools to efficiently:

- Identify the magnetic vibration wave involved in noise generation
- Identify the wavenumber associated to a given vibration / noise line
- Separate the structural response from the magnetic excitations

3- Provide a gateway for an efficient e-NVH design workflow

- Providing relevant psychoacoustic indices for e-NVH
- Separating magnetic from non-magnetic
- Enabling playback (virtual sound design of electric motor or switching signatures)

Quantifying sound: Sound Power

- > Objective : Quantifying the emitted Sound Power (ISO based : ISO374x)
- > Motor, Inverter, Accessory motors
- > Anechoic chamber, Production

ATPA results: Structural contributions

ull.

ATPA results: Panels contributions

ATPA results: Structure to Panels

ullu.

ODS and Modal Analysis

- > ODS :
 Operating deflection shape
- > Modal Analysis: SIMO, MIMO, OMA

- Resonance damping
- Stator yoke deflection

EV/HEV Testing solutions: from sources to reponse

Accessories & Components Filtered playback

Pyschoacoustics evaluation Sound Power

Chassis Light structure modal analysis Transfer path analysis

4 Panels

Transfer path analysis Panel contributions at target Sources ranking

5 Battery charging noise Noise frequency signature

6 Aerodynamic sources Acoustic holography to locate aerodynamic sources

ATE 2019 - NVH assessment and optimization in EVs and HEVs

OROS e-NVH Solutions

Services

Acquisition focused on your needs

Instrumentation

Acquisition focused on your needs

Software

E-NVH measurements & analysis

MEASURING NOISE & VIBRATION

